Molecular sieves adsorb moisture & filter specific gases.

 Very strong drying
 Adsorption of other substances possible (selective adsorption)
 Can be used at temperatures up to 250°C
 Can be used in all humidity conditions
 Regenerable from 300°C

BUY ONLINE

Molecular sieves in comparison.


Molecular sieve 3A

 Removal of water
 Suitable for drying polar solvents



  • Cations K+
  • Actual pore size 0,30nm 
  • Effective pore size 0,38nm
  • Bulk density 0,67kg/l
  • Pore volume 0,35-0,70ml/g
  • Breakage resistance >70N
  • Specific surface area 500-1000qm/g
  • 575°C ignition loss <1,5%
  • Abrasion rate <0,25%
  • Water absorption capacity >210ml/kg
  • Regeneration temperature 300°C  


BUY ONLINE

Molecular sieve 4A

 Removal of water and carbon dioxide
 Suitable for drying nonpolar solvents and gases





  • Cations Na+
  • Actual pore size 0,42nm 
  • Effective pore size 0,42nm
  • Bulk density 0,67kg/l
  • Pore volume 0,35-0,70ml/g
  • Breakage resistance >80N
  • Specific surface area 500-1000qm/g
  • 575°C ignition loss <1,5%
  • Abrasion rate <0,25%
  • Water absorption capacity >230ml/kg
  • Regeneration temperature 300°C  

BUY ONLINE

Molecular sieve 5A 

 Removal of water and​ carbon dioxide
 Suitable for the adsorption of normal (linear) hydrocarbons up to n-C4H10, alcohols up to C4H9OH and mercaptans up to C4H9SH

  • Cations Ca+
  • Actual pore size 0,50nm 
  • Effective pore size 0,50nm
  • Bulk density 0,67kg/l
  • Pore volume 0,35-0,70ml/g
  • Breakage resistance >80N
  • Specific surface area 500-1000qm/g
  • 575°C ignition loss <1,5%
  • Abrasion rate <0,25%
  • Water absorption capacity >230ml/kg
  • Regeneration temperature 300°C  


BUY ONLINE 

Molecular sieve 13X

 Removal of water and carbon dioxide
 Drying and desulfurization of natural gas, liquefied gas, and liquid hydrocarbons
 Suitable for drying HMPT

  • Cations Na+
  • Actual pore size 0,75nm 
  • Effective pore size 0,90.1,00nm
  • Bulk density 0,60kg/l
  • Pore volume 0,35-0,70ml/g
  • Breakage resistance >60N
  • Specific surface area 650-1250qm/g
  • 575°C ignition loss <2,0%
  • Abrasion rate <0,25%
  • Water absorption capacity >210ml/kg
  • Regeneration temperature 300°C  


BUY ONLINE 

Downloads.

Molekularsieb

 Technisches Datenblatt (TDB)

Sicherheitsdatenblatt (SDB)

Molekularsieb 3A 
1,6 - 2,5mm und 3,0 - 5,0mm 
DOWNLOAD

DOWNLOAD

Molekularsieb 4A 
1,6 - 2,5mm und 3,0 - 5,0mm 

 DOWNLOAD

 DOWNLOAD

Molekularsieb 5A 
3,0 - 5,0mm 

DOWNLOAD

DOWNLOAD

Molekularsieb 13X 
1,6 - 2,5mm und 3,0 - 5,0mm 

DOWNLOAD

DOWNLOAD

What are molecular sieves?

Molecular sieves or zeolites are crystalline aluminosilicates whose crystal water can be removed by heat without causing significant damage to the lattice. They are usually formed into granules for use in adsorption systems. Zeolites can be produced synthetically. Naturally occurring zeolites include chabazite, mordenite, erionite, and clinoptilolite. However, adsorption technology mostly uses synthetically produced zeolites, which are made from a mixture of sodium aluminate and water glass, or from metakaolin and caustic soda. Type A and X zeolites are most commonly used.

The pore size determines the permeability of the adsorbent. The uniform structure enables a large specific surface area of up to 1250 m²/g.

Unlike silica gel, molecular sieves do not have a color indicator. Therefore, the regeneration temperature is 300 °C. The maximum load does not change with the number of regeneration cycles.

Type A

The unit cell of zeolite A is cubic. The lattice consists of aluminosilicate cuboctahedra, with each cuboctahedron connected to six other cuboctahedra via oxygen bridges.

The cuboctahedrons are formed from SiO₂ and AlO₄ tetrahedrons. Due to the trivalence of aluminum, the AlO₄ tetrahedron is negatively charged, allowing cations—e.g., those of the alkali and alkaline earth groups—to be bound. These cations are found in the cavities and also in the pore area.

Type X

The unit cell of zeolite X also consists of aluminosilicate cuboctahedra – however, a different type of bonding results in a tetrahedral arrangement, known as the faujasite structure. 

Adsorbierbarkeit versch. Stoffe an Molekularsieben​.



Critical molecular diameter

3A

4A

5A

13X

He

2,0

X

X

X

X

Ne

3,2


X

X

X

Ar

3,8


X

X

X

Kr

3,9


X

X

X

Xe

4,7



X

X

H2

2,4

X

X

X

X

O2

2,9


X

X

X

N2

3,0


X

X

X

H2O

2,6

X

X

X

X

CO

3,2


X

X

X

CO2

2,8

(X)

X

X

X

NH3

3,8

(X)

X

X

X

H2S

3,6

(X)

X

X

X

CH3OH

4,4

(X)

X

X

X

CH4

4,0


X

X

X

C2H2

3,0


X

X

X

C2H4

4,3


X

X

X

C3H6

5,0


X

X

X

C2H6

4,4


X

X

X

C2H5OH

4,4

(X)

X

X

X

SO2

4,3


X

X

X

C2H6

4,4


X

X

X

C2H3OH

4,4


X

X

X

C3H8 + higher paraffins

4,9



X

X

CF4

5,3




X

C2F6

5,3




X

C3H10 + higher i-paraffins 

5,6




X

C6H6

6,7




X

C7H8

6,7




X

SF6

6,7




X

CCl4

6,9




X

C(CH3)4

6,9




X

C2Cl6

6,9




X

Cl2

8,2




X

iC4 and higher

5,6




X

i-Paraffins






Benzene

6,7




X

Toluene 

6,7




X

Characteristics of commercial zeolites


Zeolite Type

Zeolite Type

Nominal pore diameter (Å)

3A

K

3

4A

Na

3,9

5A

Ca

4,3

13X

Na

8

Y

K

8

Mordenite

Na

7

ZSM-5

Na

6

Silicalite


6


FAQ about molecular sieves.

Features
Field of Applications
Safe Use
Packaging Units